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Abstract

We adapted the WRF-Hydro modelling system to Hurricane Florence (2018) and

performed a series of diagnostic experiments to assess the influence of initial soil

moisture and precipitation magnitude on flood simulation over the Cape Fear River

basin in the United States. Model results suggest that: (1) The modulation effect of

initial soil moisture on the flood peak is non-linear and weakens as precipitation mag-

nitude increases. There is a threshold value of the soil saturation, below and above

which the sensitivity of flood peak to the soil moisture differentiates substantially;

(2) For model spin-up, streamflow needs longer time to reach the ‘practical’ equilib-
rium (10%) than the soil moisture and latent heat flux. The model uncertainty from

spin-up can propagate through the hydrometeorological modelling chain and get

amplified into the flood peak; (3) For ensemble flood modelling with a hydrometeoro-

logical system, modelling uncertainty is dominated by the precipitation forecast.

Spin-up induced uncertainty can be minimized once the model reaches the ‘practical’
equilibrium.
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1 | INTRODUCTION

Flooding is the most frequently occurring natural disaster. Around the

globe, it accounts for 39% of natural hazards since 2000 and affects

more than 94 million people each year (Wu et al., 2020). Flooding is

the costliest natural disaster in the United States as well. Over the

past 30 years, the annual average economic loss from freshwater

flooding amounts to $8.2 billion (Wing et al., 2018). For the eastern

United States, a major cause of flooding is the landfalling tropical

cyclones (Smith et al., 2010; Villarini & Smith, 2010). During 1963–

2012, hurricane induced inland floods and mudslides accounted for

27% out of 2325 natural disaster-related deaths in America
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(Rappaport, 2014). Climate models project an increase in both the

intensities of the strongest storms and the accompanying rain rates

(Dinan, 2017; Knutson et al., 2010; Walsh et al., 2016). This foresee-

able challenge under climate change requires better understanding

and reliable flood forecasting.

Precipitation and soil moisture are well acknowledged as the two

most important climate variables controlling flood response (Brocca

et al., 2008; Massari, Brocca, Barbetta, et al., 2014; Massari, Brocca,

Moramarco, et al., 2014). As the dominant meteorological driver, the

magnitude and intensity (Diakakis, 2012; Hewlett et al., 1977; Smith

et al., 2005) and spatial–temporal distribution (Huang et al., 2012;

Klongvessa et al., 2018; Ogden & Julien, 1993; Oppel & Fischer, 2020;

Singh, 1997; Villarini et al., 2011) of precipitation, as well as associated

storm motion (Singh, 1997; Sturdevant-Rees et al., 2001; Yang

et al., 2017) can all exert substantial influence on flooding. Meanwhile,

soil moisture is the major variable defining hydrologic state and plays a

key role in modulating rainfall-runoff processes (Grillakis et al., 2016;

Li, Pontoppidan, et al., 2020; Nikolopoulos et al., 2011; Schröter

et al., 2014; Sharma et al., 2018; Uber et al., 2018). Its effect on flood

response varies with precipitation magnitude. For instance, initial soil

moisture is believed to be more important during medium and smaller

events than during extreme events of high-return period (Castillo

et al., 2003; Grillakis et al., 2016; Wood et al., 1990).

Given the control of soil moisture and precipitation on flood

response, soil moisture initialization and precipitation forecast are par-

ticularly important in flood modelling and forecasting (Berthet

et al., 2009; Massari, Brocca, Barbetta, et al., 2014; Massari, Brocca,

Moramarco, et al., 2014; Noto et al., 2008). On one hand, detailed in

situ soil moisture observations are usually not available. Remote sens-

ing soil moisture products, such as the advanced scatterometer

(ASCAT, Bartalis et al., 2007) and the Soil Moisture Active Passive

(SMAP, Entekhabi et al., 2010), although being widely used as an alter-

native of in situ observations to estimate soil moisture at regional and

global scales (e.g., Abbaszadeh et al., 2020; Brocca et al., 2017; Mas-

sari, Brocca, Barbetta, et al., 2014), can only provide surface (the top

several centimetres of the soil column) soil moisture information (Peng

et al., 2017). On the other hand, uncertainties in initial soil moisture

can propagate from the beginning of the modelling chain to the final

streamflow simulation (Edouard et al., 2018; Silvestro & Rebora, 2014).

To reduce such uncertainty, spin-up is usually adopted prior to a for-

mal simulation. The purpose of spin-up is to let the model reach an

equilibrium state at which the final results are subject to minimal influ-

ence from initial conditions (Ajami et al., 2014, 2015; Cosgrove

et al., 2003; Seck et al., 2015). Different criteria (Ajami et al., 2014,

2015; Cai et al., 2014; Chen et al., 1997; Cosgrove et al., 2003; Yang

et al., 1995) have been proposed and applied to define the equilibrium

state following the guideline that model's states from two recursive

runs are nearly identical. Thus, for flood forecast using a hydrometeo-

rological model, one important task is to identify the time needed for

the model to reach the equilibrium state. In addition, it is well acknowl-

edged that the quantitative precipitation forecast is the major source

of uncertainty in flood modelling using a hydrometeorological model-

ling system (Edouard et al., 2018; Vincendon et al., 2011; Wu

et al., 2020). One commonly applied approach to quantify such

uncertainty is through convection-permitting precipitation ensemble

simulation (e.g., Hsiao et al., 2013; Liu et al., 2017; Mackey &

Krishnamurti, 2001; Nester et al., 2012; Wood & Lettenmaier, 2008).

However, how uncertainties in precipitation forecast may propagate

through the modelling chain remains an open question.

The objective of this study is to assess the impact of the initial soil

moisture condition and precipitation magnitude on flood modelling

using a hydrometeorological modelling chain. In this study, precipita-

tion magnitude refers to the storm total rainfall during the event. And

we use peak streamflow to characterize the flood because measure-

ments are available at U.S. Geological Survey (USGS) stream gages

(U.S. Geological Survey, 2022). We applied the Weather Research and

Forecasting Model Hydrological modelling extension package (WRF-

Hydro, Gochis et al., 2020) in both ‘offline’ and ‘one-way coupled’
mode to the Cape Fear River basin to simulate Hurricane Florence

(Florence) induced flood in September 2018. Three research questions

are investigated: (1) the influence of initial soil moisture on flood

response and its connection with precipitation magnitude, (2) model

spin-up behaviour and the associated flood modelling uncertainties,

and (3) model uncertainty related to precipitation forecast ensembles

and its sensitivity to model spin-up. The rest of the article is organized

as follows. Section 2 describes material and methods, including study

area information, model framework, and experiment design. Section 3

presents and discusses the model results. In Section 4, we close the

article with a summary and conclusions. Our study is one of the very

few applications of WRF-Hydro to simulate hourly streamflow over

coastal river basins during hurricane-induced floods. The information

derived from this study is essential in understanding the hydrometeo-

rological and hydrological control of hurricane-induced floods, which

will provide baseline knowledge for forecasting hurricane-induced

flood using a hydrometeorological system.

2 | MATERIAL AND METHODS

2.1 | Study area and event

The Cape Fear River basin is located in the east-central North Caro-

lina, United States (Figure 1a) and has a drainage area of 23 889 km2.

From the headwater area to its coastal region, the elevation drops

from 364 m to nearly 0 m (Figure 1b). The climate of Cape Fear River

basin is subtropical with long, hot, humid summers and short, cold to

mild winters. During 2002–2012, the average annual precipitation

was �1200 mm (Hamel & Guswa, 2015).

In this study, we focus our analysis on three major subbasins

within the Cape Fear River basin (Figure 1b)-the Haw River subbasin

above Bynum (USGS no. 02096960) in the upper part, Little River

subbasin above Manchester (USGS no. 02103000) in the middle, and

Black River subbasin above Tomahawk (USGS no. 02106500) over

the lower basin. The Haw River subbasin is the largest and steepest of

the three with a drainage area of 3302 km2 and an average slope of

1.98� (Figure 1c). According to the 21 Category Modified International

Geosphere-Biosphere Programme (IGBP) Moderate Resolution Imag-

ing Spectrometer (MODIS) land cover product and the State Soil
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Geographic Database (Miller & White, 1998), the soil and land cover

in this subbasin are dominated by sandy loam (52%) and forest (44%),

respectively. The Little River subbasin drains an area of 901 km2 with

an average slope of 1.92� (Figure 1c). Forest (66%) is the dominating

land cover while the soil there is solely loamy sand. In sharp contrast,

the topography in the Black River subbasin is much flatter and has an

average slope of 0.67� (Figure 1c). It has a drainage area of 1751 km2.

The land cover is mainly cropland/natural vegetation mosaic (57%),

and the major soil type is loamy sand (53%).

In 2018, Florence swamped the Cape Fear River basin as the

ninth-most-destructive hurricane ever hit the United States

(Stewart & Berg, 2019). During its slow crest around the basin during

the period of 14–18th September, it brought historic amounts of rain-

fall. According to Kunkel and Champion (2019), Florence ranked as the

seventh largest rainfall event with a duration of 4 days for an area of

50 000 km2. Following the torrential rainfall, severe and widespread

flooding occurred across the basin. The USGS stream gages at Little

River at Manchester (USGS no. 02103000, Figure 1b), Black River near

Tomahawk (USGS no. 02106500, Figure 1b) and Northeast Cape Fear

River near Chinquapin (USGS no. 02108000, Figure 1b) all observed

peak streamflow with a ≥ 500-year return period (Feaster et al., 2018).

2.2 | The hydrometeorological modelling system

In this study, we selected WRF-Hydro (Gochis et al., 2020) due to its

application flexibility in both ‘offline’ and ‘one-way coupled’ mode. In

the ‘offline’ mode, WRF-Hydro can be driven by prescribed meteoro-

logical forcing such as the Phase 2 of the North American Land Data

Assimilation System (NLDAS2) (Mitchell et al., 2004; Xia et al., 2012).

While in “one-way coupled” mode, WRF-Hydro can be driven by out-

puts from an atmospheric model such as WRF (UCAR, 2019). Both

offline (e.g., Somos-Valenzuela & Palmer, 2018; Xue et al., 2018; Yin

et al., 2020, 2021) and one-way coupled (e.g., Kerandi et al., 2018; Li

et al., 2017; Senatore, Davolio, et al., 2020; Senatore, Furnari, &

Mendicino, 2020) WRF-Hydro have been successfully applied in

hydroclimatic change, flooding and water budget studies. In operation,

WRF-Hydro serves as the core component of the National Oceanic

F IGURE 1 (a) NOAA (National Oceanic and Atmospheric Administration of America) best track for hurricane Florence with 6 h interval. The
cape fear river basin is outlined with solid black line. (b) Topography and river network in WRF-hydro domain (WHD01). The Haw River basin,
Little River basin and Black River basin are filled with dashed lines. The USGS stream gages used are labelled with red stars. (c) Topographic slope
in degree and (d) storm total rainfall during 0000 UTC 14 to 0000 UTC 18 September based on stage IV product across the cape fear river basin.
The Haw River basin, Little River basin and Black River basin are outlined with solid black lines
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and Atmospheric Administration National Water Model (NOAA

NWM) in the United States, and of the Operational Flood Forecasting

system operated by Israeli Hydrological Service in Israel.

As the first step of our study, WRF-Hydro was calibrated and

evaluated in the offline mode and was driven by precipitation

regridded from the Stage IV multi-sensor quantitative precipitation

estimation product (Stage IV, Lin, 2011). Based on the multi-sensor

hourly/6-hourly ‘Stage III’ analyses that were produced by the

12 River Forecast Centers (RFC) in CONUS on local 4 km polar-

stereographic grids, Stage IV is mosaiced by the National Centers for

Environmental Prediction (NCEP) as a national product (Lin, 2011). As

a multi-sensor precipitation product, Stage IV ingests data from spa-

tially complete and high-resolution radar as well as rain gauge net-

works. Other forcing variables including air temperature, wind, short

and long wave radiation, humidity, and pressure were from NLDAS2.

Once calibrated, a series of numerical experiments were carried out to

investigate the first and second research questions as mentioned in

Section 1. Following that, we applied WRF-Hydro in a one-way

coupled mode with WRF to investigate the third research question.

2.2.1 | WRF-hydro: Setup, calibration and
evaluation

As the hydrological component, WRF-Hydro V5.1.1 (Gochis

et al., 2020) was used in this study. Built upon the Noah land surface

model with multi-parameterization options (Noah-MP, Niu

et al., 2011), WRF-Hydro enhances the physical realism of the water

cycle by integrating subsurface and overland flow routing, base flow

and channel routing via the corresponding modules. In our study, sub-

surface routing, one-way overland routing, the bucket base flow

model and diffusive wave routing are all activated. The computational

domain of WRF-Hydro (WHD01) has a dimension of 2490 (west to

east) � 3490 (north to south) with a horizontal grid spacing of 100 m

(Figure 1b, Figure 2). The timestep of Noah-MP is set to 1 h while

that of overland and channel routing in the hydrological simulation

is 10 s.

WRF-Hydro was calibrated at Haw River near Bynum (USGS

no. 02096960, Figure 1b), Little River at Manchester (USGS

no. 02103000, Figure 1b) and Black River at Tomahawk (USGS

no. 02106500, Figure 1b). The calibration period was from 0000 UTC

14–30 September 2018. We selected parameters controlling infiltra-

tion (refkdt), groundwater recharge (slope), saturated hydraulic con-

ductivity (LKSATFAC), and overland and channel roughness

(OVROUGHRTFAC and Mann) for calibration. The Haw River subba-

sin was calibrated automatically with NCAR's WRF-Hydro calibration

tool. The tool makes use of dynamically dimensioned search (DDS)

methodology, which is designed for multiple parameters calibration

and is ideally suited for a fully distributed model such as WRF-Hydro

(Tolson & Shoemaker, 2007). For the Little River and Black River sub-

basins, we calibrated WRF-Hydro manually through a stepwise way

following Yucel et al. (2015).

F IGURE 2 Model domains: The outer domain of WRF (WRF D01, solid black line), the inner domain of WRF (WRF D02, dashed black line)
and the domain of WRF-hydro (WH D01, solid red line).
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Following the calibration, model evaluation was conducted. For

Haw River subbasin, the model was evaluated at two stream gages in

the neighbouring Deep River subbasin (USGS no. 02100500 and

02101726, Figure 1b) considering their similarity in land surface char-

acteristics. Similarly for the Black River subbasin, parameter evalua-

tion was conducted at a stream gage along the Northeast Cape Fear

River (USGS no. 02108000, Figure 1b). For the Little River subbasin,

as there is no independent stream gage to evaluate the calibrated

parameters during Hurricane Florence, we carried out the evaluation

over the same stream gage during another hurricane event-Hurricane

Matthew (2016, Matthew hereafter). Formed as a category 5 hurricane

at 0000 UTC 1 October 2016, Matthew made landfall around 1500

UTC 8 October along the central coast of South Carolina as a category

1 hurricane (Figure S1, Stewart, 2017). Three hours later after its land-

fall, the centre of Matthew moved back to the ocean and kept off-

shore of coastal North Carolina through 9 October 2016. During the

2 days it passed by the Carolinas, a large amount of rainfall was

dumped over the study area. The maximum storm total rainfall

recorded was 431 mm (Figure S1).

In addition to streamflow, we evaluated the simulated evapo-

transpiration (ET hereafter) against the remotely sensed 8-day ET

from the MOD16 A2 Version 6 Evapotranspiration/Latent Flux prod-

uct at 500-m resolution (MODIS ET hereafter, Running et al., n.d.; Mu

et al., 2011) following previous studies (e.g., Lin, Rajib, et al., 2018;

Parajuli et al., 2018; Xue et al., 2018).

To evaluate model performance, Nash-Sutcliffe coefficient (NSE,

Equation [1]) was calculated in this study.

NSE¼1�
PT

t¼1 Ot�Ptð Þ2
PT

t¼1 Ot�Ot
� �2 , ð1Þ

where Ot is the measured streamflow at time t, Pt is simulated stream-

flow at time t, Ot is the mean of measured streamflow, and T is the

total number of observations. Following Lin, Hopper, et al. (2018), a

NSE value of >0.4 is considered as satisfactory for hourly streamflow

simulation under heavy rainfall events.

2.2.2 | WRF: Setup, configuration and ensemble
design

WRF Version 4.0.1 (UCAR, 2019) was used to generate precipitation

forecast ensembles. A one-way nested domain was built with a grid space

ratio of 3 (Figure 2). The outer domain (WRF D01) covers the eastern,

middle, and southern United States as well as the Gulf of Mexico with a

grid spacing of 9 km. The inner domain (WRF D02) includes North and

South Carolina with a grid spacing of 3 km. The vertical levels were

40 for both domains. The Yonsei State University scheme (YSU, Hong

et al., 2006), the RRTM Model for GCMs (RRTMG, Iacono et al., 2008),

the revised MM5 Monin-Obukhov surface layer scheme and the unified

Noah-MP land-surface model (Niu et al., 2011) were selected for both

domains. Tiedtke scheme (Michael Tiedtke, 1989; Zhang et al., 2011) was

only applied for the outer domain (WRF D01).

To quantify the uncertainty from the precipitation forecast, we

carried an ensemble simulation with 12 members (OFF1 to OFF12;

Table 1). The initial and boundary conditions were provided by the

fifth generation European Centre for Medium-Range Weather Fore-

casts (ECMWF) atmospheric reanalysis of the global climate (ERA5,

Hersbach et al., 2020) with hourly interval and the final operational

global analysis data from NCEP with a six-hour interval(NCEP-FNL,

National Centers for Environmental Prediction/National Weather Ser-

vice/NOAA/U.S. Department of Commerce, 2000). The horizontal

resolution of ERA5 is 0.25� and that of NCEP-FNL is 1�. The WRF

models were initialized at 1800 and 1200 UTC 13 September 2018,

which is 18 and 24 h before landfall of Florence, respectively. Three

microphysics schemes were applied, which are WRF Single-Moment

6-class (WSM6, Hong et al., 2005), Thompson graupel (Thompson

hereafter, Thompson et al., 2008) and Morrison (Morrison hereafter,

TABLE 1 Setup and configuration of WRF ensemble

Exp. Initial and boundary condition

Microphysics scheme

Simulation periodWRFD01 WRFD02

OFF1 ERA5 WSM 6 1800 UTC 13 September – 0600 UTC 18 September 2018

OFF2 Thompson

OFF3 Morrison

OFF4 NCEP-FNL WSM 6

OFF5 Thompson

OFF6 Morrison

OFF7 ERA5 WSM 6 1200 UTC 13 September – 0600 UTC 18 September 2018

OFF8 Thompson

OFF9 Morrison

OFF10 NCEP-FNL WSM 6

OFF11 Thompson

OFF12 Morrison
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Morrison et al., 2009). Microphysics refers to the sub-cloud-scale pro-

cesses, which deals with the distribution and concentration of hydro-

meteor. Microphysics scheme is important to weather simulation

because the formation, concentration and distribution of hydrometeor

can highly influence the radiation, heat distribution and precipitation

rate. The three microphysics schemes selected in this study belong to

the bulk scheme, which apply a gamma distribution function to the

concentration distribution of the specific type of hydrometeor. The

detailed difference between these three schemes can be found in Bao

et al. (2019). Hourly outputs from the inner domain (WRF D02) were

regridded to the 1-km land surface model domain of the WRF-Hydro

(WH D01) to provide forcing for the flood modelling.

2.3 | Experiment design

A total of 261 experiments was carried out to diagnose the influence

of initial soil moisture on flood response and its connection with pre-

cipitation magnitude, model spin-up behaviour and the associated

flood modelling uncertainties, as well as the uncertainty related to

precipitation forecast (Table 2).

2.3.1 | Soil moisture and precipitation magnitude
(experiment suite E1)

To investigate the effect of initial soil moisture condition on flood

response with respect to different precipitation magnitudes, we car-

ried out WRF-Hydro offline simulations with eight initial soil moisture

conditions combined with five precipitation magnitudes. The initial

soil moisture condition varies from being 20%–90% saturated with a

10% interval. The precipitation magnitude was derived by multiplying

the hourly rain rate from the Stage IV product with a factor of 0.6,

0.8, 1.0, 1.2 and 1.4, respectively. Here, we assume that the Stage IV

is free of errors. In total, 40 experiments were conducted.

2.3.2 | Spin-up behaviour and the associated
uncertainties (experiment suite E2)

To assess the model's behaviour in response to spin-up time, we car-

ried out another 17 experiments. In those experiments, the model

was initialized from 1 to 17 months before the formal run at UTC

0000 14 September 2018, respectively. Streamflow, basin- and

column-averaged soil moisture as well as basin-averaged latent heat

flux was selected to evaluate the model's equilibrium state.

2.3.3 | Precipitation induced uncertainty and its
dependence on spin-up (experiment suite E3)

The precipitation outputs from 12 ensemble simulations (OFF1 to

OFF12) described in Section 2.2.2 were used to drive WRF-Hydro to

quantify the model uncertainty from precipitation forecast. We also

investigated the variation of the model uncertainties from the precipi-

tation forecast with different model spin-up time. For this, the

12 ensemble precipitation simulations were used to drive the hydro-

logical model with 1–17 months spin-up described in Section 2.3.2.

3 | MODEL CALIBRATION AND
EVALUATION

Table 3 details the model performance in simulating hourly streamflow

and total ET. For streamflow, the NSE values at all stream gages during

both calibration and evaluation events are all much higher than 0.4, indi-

cating the satisfactory performance of WRF-Hydro in reproducing the

flood response at a high-temporal resolution. It also suggests that a grid-

based modelling system like WRF-Hydro is capable of providing flood

forecast with reasonable accuracy at subbasin scales over a large coastal

river basin with reliable forcing input, and when the spatial heterogeneity

of land surface characters is appropriately considered.

In addition, Table 3 compares the simulated basin averaged total

ET during 14–30 September 2018 against MODIS. On one hand, the

model slightly overestimated the ET in the Haw River subbasin (4%),

and the Black River subbasin (2%) compared to MODIS. On the other

hand, in comparison to MODIS, our model underestimated the ET

over the Deep River subbasin, the Little River subbasin, and the

Northeast Cape Fear River subbasin by 11%, 12.7% and 3%, respec-

tively. The correlation coefficient between modelled and MODIS ET is

0.59, which is in line with previous works (Bowman et al., 2015;

Parajuli et al., 2018), implying a reliable model performance.

4 | RESULTS AND DISCUSSION

4.1 | Impact of initial soil moisture and
precipitation magnitude on flood peak

Figure 3 shows the simulated relative flood peaks, which is defined

here as the ratio between the simulated flood peak and the observed

one, over the three subbasins with different initial soil moisture condi-

tions and different precipitation magnitudes. The flood peaks gener-

ally increase with the initial soil moisture. Consistent with previous

TABLE 2 Setup of the numerical experiments (N is the total number of simulations for each experiment suite)

Exp. Model spin-up (month) Initial soil moisture (% saturation) Precipitation source Precipitation. Magnitude (multiplier) N

E1 – 20, 30, …, 90 Stage IV 0.6, 0.8, 1.0, 1.2, 1.4 40

E2 1, 2, …, 17 – Stage IV – 17

E3 1, 2, …, 17 – WRF ensemble – 204

6 of 19 YIN ET AL.



studies (Grillakis et al., 2016; Silvestro & Rebora, 2014; Uber

et al., 2018), we found that the impact of initial soil moisture on flood

peak is non-linear. There exists a threshold value of the initial soil

moisture, below which the sensitivity of flood peak to initial soil mois-

ture is very low. As the soil moisture gets above the threshold value,

the flood peak increases much more rapidly. This non-linearity is

attributable to the crucial influence of soil moisture on the rainfall-

runoff process (Zehe & Sivapalan, 2009). With low-soil moisture

condition, water storage capacity is high and considerable amount of

initial loss of rainfall to subsurface storage compartment can be

expected. Similarly, with more saturated soil, precipitation magnitude

will dominate the rainfall-runoff process and most of the rainfall is

expected to become surface runoff. This results in rapid increase of

flood peak once the initial soil moisture is higher than the threshold

value. Due to this non-linear effect, flood peak from wet soil condition

can be substantially larger than that when soil is drier. For instance,

the simulated flood peak with 90% saturated initial soil moisture is

almost two times of that with drier soil (less than 50% saturated,

Figure 3).

This threshold effect underscores the pivotal role initial soil

moisture, which is related to the soil properties, plays in modulat-

ing flood peaks. Grillakis et al. (2016) claimed that soil type can

largely influence the threshold by controlling the hydraulic conduc-

tivity. Sandy soil is reported to be the main reason for the

threshold behaviour because of its high permeability (Komma

et al., 2007, 2008). On the other hand, the relationship of flood

peak and initial soil moisture tends to be more linear over areas

with shallow and more impermeable soils (Grillakis et al., 2016). In

addition, the threshold can be increased with the presence of pref-

erential pathways such as opening cracks or root channels in the

soil (Vogel, Hoffmann, Leopold, et al., 2005; Vogel, Hoffmann, &

Roth, 2005; Zehe & Sivapalan, 2009). For the case of our study, it

can be observed that the threshold value in the Haw River subba-

sin (�60%) is higher than that in the Little River and the Black River

subbasins (�50%, Figure 3), likely because the soil type in the Haw

River subbasin is dominated by sandy loam while the other two

subbasins are mainly loamy sand.

Previous studies reported largely varied threshold values. A

threshold of 34% saturation was found by Uber et al. (2018) over the

Cévennes–Vivarais region in southern France. Penna et al. (2011)

observed a value of 45% saturation in a small headwater catchment in

the Italian Alps. Mcmillan et al. (2014) tested the threshold behaviour

of soil moisture on event runoff based on observations over a mid-

sized catchment in Northland, New Zealand. They found that the

threshold values can range from 27% saturation to 58% saturation.

Moreover, a threshold value of 50% saturation was reported by Grilla-

kis et al. (2016) over two catchments in Crete and Austria. Further, a

threshold soil moisture that approximates 80% saturation was

TABLE 3 Overview of WRF-hydro performance in modelling hourly streamflow and total evapotranspiration (ET)

River basin

NSE (hourly streamflow) Total ET (mm)

Calibration Evaluation independent stream gage Evaluation independent event Model MODIS

Haw river 0.91 0.86 (USGS no. 02101726)

0.93 (USGS no. 02100500)

– 48.3 46.3

Little river 0.80 – 0.69 50.1 57.4

Black river 0.98 0.79 – 50.3 49.3

Deep river – – – 51.4 57.1

Northeast Cape Fear river – – – 49.9 51.3

F IGURE 3 Simulated relative flood peaks (dividing by observed) with different initial soil moisture conditions (%, the relative saturation) and
different precipitation magnitudes over (a) Haw River basin at Bynum (USGS no. 02096960), (b) Little River basin at Manchester (USGS
no. 02103000), and (c) Black River basin at tomahawk (USGS no. 02106500). Precipitation magnitude is normalized by that of the stage IV
product. The locations of the stream gages and basins are shown in Figure 1b
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observed for runoff generation in southwestern Wisconsin agricul-

tural watersheds (Radatz et al., 2013).

We also investigated how the influence of initial soil moisture on

flood peak vary with the precipitation magnitude. Figure 4 shows the

normalized flood peaks (dividing by the mean) under different precipi-

tation magnitudes with eight different initial soil moisture conditions.

In the three subbasins, flood peak variation decreases as precipitation

magnitude increases. In line with previous studies (Castillo

et al., 2003; Grillakis et al., 2016; Nikolopoulos et al., 2011; Noto

et al., 2008; Silvestro & Rebora, 2014; Wood et al., 1990), this trend

indicates that the role initial soil moisture plays in modulating flood

response weakens as precipitation magnitude increases. It is because

that the soil's holding capacity can be easily filled at the beginning of

the heavy rainfall event. Then the runoff generation is controlled by

precipitation instead of initial soil moisture. For our study area, we

can take Florence induced precipitation as a benchmark value. For

hurricanes with precipitation magnitude smaller than Florence, initial

soil moisture condition has the potential to exert an important influ-

ence on flood peak. Whereas, for events with precipitation magnitude

bigger than that of Florence, initial soil moisture condition seems to

have limited influence on flood peak (Figure 4). Thus, in light of the

projected precipitation increase associated with Atlantic hurricanes

(Knutson et al., 2010), as well as the unprecedentedly high precipita-

tion since the late 1990s (Paerl et al., 2019), better understanding of

rainfall characteristics (especially precipitation magnitude) seems to be

more important than initial soil moisture conditions in flood forecast-

ing associated with extreme events. Take Hurricane Harvey as an

example, for an area sized 50 000 km2, Harvey is the single largest

rainfall event with a duration of 4 days (Kunkel & Champion, 2019).

According to Li, Zhao, et al. (2020), the antecedent rainfall event only

plays a minor role in the floods at Houston reservoirs associated with

Harvey. Whereas, a redistribution of the rainfall field due to the

change of Harvey's track could have induced a significantly larger

(49%) total volumetric flow than was actually measured (Li, Zhao,

et al., 2020).

4.2 | Spin-up behaviour and associated model
uncertainties

4.2.1 | Spin-up behaviour

In this study, following Seck et al. (2015) and Ajami et al. (2014), we

define three different criterion of equilibrium state at which the rela-

tive difference of model variables in recursive runs are less than 10%

(‘practical’ equilibrium), 1% and 0.1% (final equilibrium), respectively.

We selected channel averaged streamflow (SF), basin and column

averaged soil moisture (SM) and basin averaged latent heat flux

(LH) as the prognostic variables to quantify equilibrium conditions.

Based on the model results from the 17 spin-up experiments (E2,

Table 2), we calculated the percent change of model states at 0000

UTC 14 September 2018 among these recursive runs.

Calculated percent change of the selected variables with spin-up

time and the number of months needed for the model to reach equi-

librium are shown in Table 4 and Figure 5. In general, the model

reaches the ‘practical’ equilibrium (<10%) for all three variables in the

three subbasins with less than 4 months of spin-up (Table 4). Before

that, large variation exists between recursive experiments

(Figure 5a–c) and decreases with spin-up time. This variation indicates

the dominating influence of the most recent meteorological events on

hydrologic state over older ones. Soil moisture dried up in the first

and third month and increased during the second month prior to Flor-

ence. This led to the large positive and negative difference between

simulations with two- and one-month spin-up, and simulations with

F IGURE 4 Boxplots of the normalized flood peaks (dividing by the mean) from various initial soil moisture conditions for different
precipitation magnitudes over (a) Haw River basin at Bynum (USGS no. 02096960), (b) Little River basin at Manchester (USGS no. 02103000), and
(c) Black River basin at tomahawk (USGS no. 02106500). Precipitation magnitude is normalized by that of the stage IV product. The locations of
the stream gages and basins are shown in Figure 1b. Boxplots show the minimum value, first (lower) quartile, median, third (upper) quartile, and
maximum value

8 of 19 YIN ET AL.



three- and two-month spin-up, respectively. The latent heat flux

shows similar pattern with spin-up time as soil moisture, which is due

to the control of soil moisture on it (Gu et al., 2006). In addition,

streamflow exhibits similar but much more pronounced variation. The

maximum difference of streamflow among recursive experiments is

�87%, which is found between simulations with one- and two-month

spin-up (Figure 5a). This amplification is due to the non-linear control

of soil moisture on runoff process as mentioned in Section 4.1. And it

suggests the importance of soil moisture equilibrium in streamflow

simulation as suggested by Ajami et al. (2014).

Once the ‘practical’ equilibrium is reached (Table 4), the percent

difference gets stabilized and decreases rapidly (Figure 5a–c). Soil

moisture and latent heat flux still exhibit similar behaviour with com-

parable time needed to reach the 1% equilibrium. However, it takes

longer for streamflow to equilibrate at 1% than the other two vari-

ables. Moreover, for the final equilibrium (<0.1%), the three variables

generally equilibrate with comparable spin-up time. It should be noted

that the streamflow over the Black River subbasin did not reach final

equilibrium after 17 months spin-up. However, the absolute differ-

ence between the last two recursive runs is only 0.004 m3/s.

The three selected subbasins exhibit similar spin-up behaviour to

reach ‘practical’ equilibrium. This indicates the dominating effect from

the most recent meteorological conditions on hydrological state.

However, the magnitude of percent difference between recursive

runs over the Haw River subbasin (Figure 5a) is much larger

(Figure 5b,c), and it in general takes longer to reach 1% and 0.01%

equilibrium than the other two subbasins (Table 4). This can be

explained by the difference in hydrologic system memory among the

three subbasins (Seck et al., 2015). Hydrologic system memory is posi-

tively related to the time between the basin's current state and the

earliest precipitation event responsible for it. The Haw River subbasin

is characterized by much lower infiltration capacity but higher satura-

tion conductivity. These properties exacerbated the dryness by

depleting the soil moisture and by decreasing the infiltration. In this

case subsurface deficit occurs and leads to longer hydrologic system

memory (Seck et al., 2015).

4.2.2 | Model uncertainties associated with spin-up

In this section we quantify model uncertainties related to spin-up. Here,

the simulated flood peak with the 17-month spin-up is treated as the

equilibrium condition. The percent bias of the simulated flood peaks from

the equilibrium one over the three selected subbasins are shown in

Figure 6 (blue). To illustrate the influence of spin-up on model uncer-

tainty, the percent bias of basin and column averaged soil moisture (SM,

red) for each subbasin at the first hour of simulations (0000 UTC

14 September 2018) with various spin-up time from equilibrium condi-

tion is also shown. For all the selected subbasins (Figure 6a–c), model bias

of flood peaks exhibits a similar pattern with spin-up time following that

of the initial soil moisture. Such similarity indicates the persistence and

propagation of bias in initial condition through the modelling chain to the

simulated flood peak. In addition, the higher magnitude of flood peak bias

than that of the initial soil moisture implies the amplification of model

uncertainty from initial soil moisture condition. This amplification is due

to the threshold effect of soil moisture on flood peak as discussed in

TABLE 4 Number of months required for the model to reach equilibrium (LH: Basin averaged latent heat flux, SF: Channel averaged
streamflow, SM: Basin and column averaged soil moisture. The percentages indicate the relative difference which model variables in recursive
runs are less than)

River basin

10% 1% 0.1%

LH SF SM LH SF SM LH SF SM

Haw river 2 4 3 7 12 6 15 13 12

Little river 2 3 2 3 5 2 12 12 5

Black river 2 2 2 3 11 2 12 – 12

F IGURE 5 Estimated percent change of basin averaged latent heat flux (LH, red), channel averaged streamflow (SF, green) and basin and
column averaged soil moisture (SM, blue) at first hours of simulations (0000 UTC 14 September 2018) between recursive experiments for (a) Haw
River basin above Bynum (USGS no. 02096960), (b) Little River basin above Manchester (USGS no. 02103000), (c) Black River basin above
tomahawk (USGS no. 02106500). The locations of the basins and stream gages are shown in Figure 1b
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Section 3.2. As the spin-up time increases, the bias of simulated flood

peak decreases.

In Table 5, we listed the flood peak bias from simulations with dif-

ferent spin-up time corresponding to the three equilibrium conditions.

For the three subbasins, once model state reaches 1% or 0.1% equilib-

rium, the bias of simulated flood peak is minimal. We noted that the

flood peak bias at the Little River and Black River subbasins never

exceeds 2.62% (13 m3/s, Table S1) and 1.16% (17 m3/s, Table S1),

respectively, regardless of the spin-up time. However, large bias still

exists at the Haw River subbasin even the model reaches ‘practical’
equilibrium. We attribute this difference to the influence of precipita-

tion magnitude on the modulating effect of soil moisture on flood

peak. During Florence, 269 and 411 mm rainfall fell over the Little

River subbasin and the Black River subbasin, respectively, which is

much larger than the 122 mm rainfall over the Haw River subbasin

(Yin et al., 2021). In addition, according to our model results, the basin

and column averaged initial soil moisture in the former two subbasins

are 26.5% and 22.7%, respectively, which is much lower than that of

the Haw River subbasin (29.6%). Thus, the combination of the high-

soil moisture and low-precipitation magnitude in the Haw River sub-

basin led to its higher sensitivity to spin-up time, whereas initial soil

moisture's influence on flood peak in the Little River and the Black

River subbasins is dampened by the large precipitation magnitude.

To gain an insight of spatial distribution of spin-up induced uncer-

tainty, we computed the percent bias of simulated flood peaks with

1-, 3- (10% equilibrium), 6- (1% equilibrium) and 12-month (0.1% equi-

librium) spin-up from the equilibrium run over all channel elements

(Figure 7). For reference, the simulated flood peaks from equilibrium

run over all the channel elements is shown in Figure S2. The percent

bias exhibits spatial variation in simulated flood peaks before model

reaching ‘practical’ equilibrium (Figure 7a). Substantial underestima-

tion is found in upper and coastal areas of the Cape Fear River basin

while overestimation is found in the middle part of the basin. As the

spin-up time increases, the spatial heterogeneity of the flood peak

bias decreases. As the model reaches ‘practical’ equilibrium state with

3 months spin-up (Figure 7b), the flood peak bias over the lower and

middle part of the basin become minimal while large overestimation

still exists over the upper basin. Once the model reaches 1%

(Figure 7c) or 0.1% equilibrium (Figure 7d), the simulated flood peaks

over the whole channel network get close to the equilibrium state

with bias only found over several small segments. The spatial hetero-

geneity of bias suggests different spin-up behaviour across the basin,

which is attributable to the difference in hydrologic system memory.

In this case, even for a fully distributed, multi-scale model like WRF-

Hydro, inadequate spin-up can result in unreliable simulation of flood

at different scales with either overestimation or underestimation

depending on the local hydrologic system memory.

4.3 | Ensemble precipitation simulation and
associated modelling uncertainty

4.3.1 | Ensemble precipitation simulation

Figure 8 shows the simulated precipitation magnitude over the

Cape Fear River basin for the 12 WRF ensemble members. Their

F IGURE 6 The percent bias of the simulated flood peaks (peak, blue) with different spin-up time from the equilibrium over (a) Haw River
basin at Bynum (USGS no. 02096960), (b) Little River basin at Manchester (USGS no. 02103000) and (c) Black River basin above tomahawk
(USGS no. 02106500). The simulation with 17-month spin-up is assumed to be the equilibrium run. For comparison, the percent bias of basin and
column averaged soil moisture (SM, red) for each basin at the first hour of simulations with various spin-up time (0000 UTC 14 September 2018)
from equilibrium condition is also shown. The locations of the basins and stream gages are shown in Figure 1b

TABLE 5 Simulated flood peak bias
with spin-up at three different
equilibrium states

River basin 10% equilibriuma 1% equilibriuma 0.1% equilibriuma

Haw river �9.82% (�143 m3/s) �2.18% (32 m3/s) 0.24% (3 m3/s)

Little river 2.62% (13 m3/s) 2.62% (13 m3/s) �0.10% (<1 m3/s)

Black river 1.16% (17 m3/s) 1.16% (17 m3/s) 0.19% (3 m3/s)

aThe equilibrium states are determined based on basin and column averaged soil moisture as shown in

Table 4.
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differences from the Stage IV product (simulation subtracted by

Stage IV) are shown in Figure S3. The simulation can generally

reproduce the spatial pattern of the precipitation magnitude with

higher values over coastal areas and lower values in the upper part

of the basin. For each ensemble member (Figure S3), both over-

and under- estimation can be found across the whole basin. The

simulations driven by NCEP-FNL (Table 1, Figure S3d–f,j–l) exhibit

an overall overestimation pattern over the basin. While the simula-

tions forced by ERA5 exhibit either overestimation-dominated

(Figure S3a,g) or underestimation-dominated patterns (Figure S3b,

c,h,i) depending on the microphysics scheme applied. For the three

selected subbasins, the ensemble precipitation simulation in gen-

eral result in overestimation compared to the Stage IV product.

Two (Figure S3b,c) and four (Figure S3b,c,h,i) out of 12 ensemble

members exhibit underestimation in terms of precipitation magni-

tude in comparison to Stage IV over the Haw River subbasin and

the Little River subbasin, respectively. While for the Black River

subbasin, all ensemble members result in an overestimation. The

overestimation of the convection-permitting models associated

with high-precipitation intensities is a common problem that has

been well documented by previous studies (Kendon et al., 2012;

Pal et al., 2019; Woodhams et al., 2018).

Time series of basin-averaged hourly rain rate of the three subba-

sins from the ensemble precipitation simulations are compared against

the stage IV product in Figure 9. Simulated hourly rain rate varies sub-

stantially among the ensemble members and the variation generally

F IGURE 7 The percent bias of the simulated flood peaks with spin-up of (a) 1 month, (b) 3 months (10% equilibrium), (c) 6 months (1%
equilibrium) and (d) 12 months (0.1% equilibrium). The simulation with 17 months spin-up was assumed to be the equilibrium run. The channel
network of the model is shown in Figure 1b
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increases as the rain rate increases. The ensemble mean can generally

capture the multi-peak signature of the rainfall time series, which is

the result of the storm motion and rainband structure evolution. A

general overestimation of the ensemble mean in comparison to the

stage IV product is observed during most of the simulation period and

is more salient when rain rate is high.

F IGURE 8 Spatial distribution of the storm total rainfall during Florence (09/140000–09/180000 2018) over the cape fear river basin for the
12 ensemble members. The three selected basins are outlined with solid black lines
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4.3.2 | Model uncertainty associated with
precipitation forecast

We used the precipitation outputs from the 12 WRF ensemble simu-

lations to drive the hydrological model (one-way coupled).

Figure 10a–c evaluates the simulated flood hydrographs for the

ensemble members and the ensemble mean against the streamflow

simulated using stage IV product. Figure 10d exhibits the bias of simu-

lated basin-averaged precipitation magnitude and associated flood

peaks. Variations can be found over the simulated flood hydrographs

among the ensemble members over all three subbasins. The percent

bias at the outlets of the subbasin range from �29% to 480% in the

Haw River subbasin, �51% to 562% in the Little River subbasin,

�42% to 153% in the Black River subbasin. This large variation of the

uncertainty related to precipitation forecast underscores the necessity

of implementing an ensemble forecasting instead of the traditional

deterministic forecast. In addition, the bias introduced by precipitation

forecasts is larger than that introduced by model spin-up as discussed

in Section 4.2, which emphasizes the dominant role of precipitation

forecast in flood modelling uncertainties. Moreover, the flood peak

bias is larger than the bias of precipitation magnitude in all three sub-

basins (Figure 10d). This indicates the amplification of precipitation

forecast bias as it propagates through the modelling chain to the flood

peak simulation. The amplification effect can be attributed to the

combined influence of the bias in the magnitude and spatial distribu-

tion of precipitation.

We then investigated the variation of precipitation forecast

induced model uncertainty on model spin-up. As shown by the box-

plots in Figure 11, a large degree of model uncertainty can be induced

by precipitation forecast regardless of the spin-up time over all three

selected subbasins. This emphasizes the dominating influence of pre-

cipitation forecast on flood modelling uncertainty over model initiali-

zation (Figure 10). The dominance of precipitation forecast is partly

because heavy precipitation dampens the modulation by soil moisture

over flood response as shown in Figure 4.

The effect of the spin-up time on flood modelling can be

observed by the variation of the ensemble mean (Figure 11 and

Figure 12) before the model reaches “practical” equilibrium with a

3-month spin-up. This implies the modulation of the initial soil mois-

ture on the distribution of flood peaks from ensemble simulations,

which is attributed to the relatively large variation of soil moisture

state in the hydrological model prior to ‘practical’ equilibrium

(Figure 6). However, the modulation effect becomes minimal once the

hydrological model reaches the ‘practical’ equilibrium and the flood

peak bias solely depends on the precipitation forecast. Moreover, it

should be noted that once the model reaches the ‘practical’ equilib-
rium, the absolute change in percent bias (calculated from relative dif-

ference between recursive spin-up runs) of ensemble mean is less

F IGURE 9 Time series of basin
averaged hourly rain rate (mm/h) for
(a) Haw River basin above Bynum (USGS
no. 02096960), (b) Little River basin
above Manchester (USGS no. 02103000),
(c) Black River basin above tomahawk
(USGS no. 02106500) from the
12 ensemble members with minimum,
lower quartile, median, upper quartile,

and maximum depicted by box plot from
the simulation during 0000 UTC 14 to
0000 UTC 18 September. The ensemble
mean is shown in black line while the
stage IV rainfall is in dashed black line.
The locations of the basins and stream
gages are shown in Figure 1b. Boxplots
show the minimum value, first (lower)
quartile, median, third (upper) quartile and
maximum value
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F IGURE 10 The modelled flood hydrographs driven by 12 ensemble rainfall (grey line), the ensemble mean (black line), and by stage IV
rainfall (blue line) over (a) Haw River basin at Bynum (USGS no. 02096960), (b) Little River basin above Manchester (USGS no. 02103000) and
(c) Black River basin above tomahawk (USGS no. 02106500). (d) Boxplots of the percent bias of simulated basin averaged rainfall relative to stage
IV observations, and of simulated flood peaks driven by WRF ensemble simulations in comparison to that driven by stage IV product. The
locations of the stream gages are shown in Figure 1b. Boxplots show the minimum value, first (lower) quartile, median, third (upper) quartile, and
maximum value

F IGURE 11 Boxplots of the percent bias of simulated flood peak from 12 ensemble simulations relative to that from stage IV over (a) Haw
River basin at Bynum (USGS no. 02096960), (b) Little River basin above Manchester (USGS no. 02103000) and (c) Black River basin above
tomahawk (USGS no. 02106500). The ensemble mean is shown in red dot. The locations of the stream gages are shown in Figure 1b. Boxplots
show the minimum value, first (lower) quartile, median, third (upper) quartile and maximum value
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than 1% (Figure 12). This indicates that in flood forecasting practise, a

‘practical’ equilibrium spin-up should be adequate to minimize spin-

up induced uncertainty.

5 | SUMMARY AND CONCLUSIONS

In this study we applied WRF-Hydro model in both ‘offline’ and ‘one-
way coupled’ mode to investigate the effect of initial soil moisture

and precipitation magnitude on flood response. In addition, we stud-

ied the model spin-up behaviour and the associated uncertainties in

flood modelling throughout a hydrometeorological modelling chain.

We also performed a precipitation ensemble simulation to understand

the modelling uncertainty related to precipitation forecast and its

dependence on spin-up. The major results from this study are summa-

rized as follows:

1. For the control of initial soil moisture on flood peak, there is a

threshold value with initial soil saturation being 50%–60%. Below the

value, the flood peak shows little sensitivity to the initial soil moisture.

Above the threshold value, the flood peak increases rapidly with initial

soil moisture. In addition, the flood peak variation due to different ini-

tial soil moisture conditions decreases as the precipitation magnitude

increases.

2. For the spin-up of WRF-Hydro, the model reaches “practical”
equilibrium (10%) within 4 months and 1% equilibrium within

12 months regardless of the prognostic variables used. In general, the

streamflow converges slower than soil moisture and latent heat flux.

3. Both the uncertainty from model spin-up and precipitation

forecast can propagate through the hydrometeorological modelling

chain and get amplified in the simulated flood peak. For the ensemble

flood forecasting, the modelling uncertainty is dominated by the pre-

cipitation forecast and is modulated by model spin-up. Spin-up

induced uncertainty is minimal once the model reaches ‘practical’
equilibrium.

Consistent with previous studies (Grillakis et al., 2016; Silvestro &

Rebora, 2014; Uber et al., 2018), the results achieved here show that

the initial soil moisture modulates the flood peak in a nonlinear way.

The modulation effect gets dampened as the precipitation magnitude

increases, which also aligns with earlier studies (e.g., Castillo

et al., 2003; Nikolopoulos et al., 2011; Noto et al., 2008; Wood

et al., 1990). Our study further emphasizes precipitation forecast as

the primary source of uncertainty in flood forecasting. This finding

agrees with previous research (e.g., Vincendon et al., 2011; Wu

et al., 2020), and underscores the importance of accurate precipitation

forecast, which can be more reliably achieved through an ensemble

simulation instead of a deterministic one. Moreover, this study points

out the necessity of model spin-up based on “practical” equilibrium to

minimize the uncertainty associated with model initialization.
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